ECE 4570

ECE 4570

Course information provided by the 2025-2026 Catalog.

The class develops the fundamentals of semiconductor electronic and photonic devices that power today's computation, communication, and memory industries. It relates the basics of pn junctions to their applications in solar cells, light emitting diodes, and lasers. Majority and minority carrier transport in heterostructure bipolar transistors is related to gain and speed limits of amplifiers for 5G communications and beyond. Schottky diodes and their applications in power electronics, and in field effect transistors of many flavors ranging from Silicon CMOS and FinFETs to GaN high electron mobility transistors are covered. Tunneling transport, flash memory, and DRAM devices are discussed. The course uses industrially relevant simulation tools, and the laboratory component gives students firsthand experience of measuring and appreciating the power and the limitations of semiconductor devices, and the reason for their revolutionary influence on our lives and society.


Prerequisites REF-FA25/Corequisites REF-FA25 ECE 3150 or permission of instructor. Corequisites: None.

Last 4 terms offered (None)

Outcomes REF-FA25

  • Obtain a well-grounded understanding of semiconductor device operation and advanced ideas in use in microelectronic industry.
  • Learn through simulations, the aspects of physical behavior that analytic solutions are incomplete at and their more complete description of operational physics.
  • Apply device fundamentals and simulation techniques to design modern nanoscale device structures.
  • Develop comprehensive skills straddling electronics, integration, and devices as used in integrated circuits leading to effective communication of results.

View Enrollment Information

Syllabi: none
  •   Regular Academic Session.  Choose one lecture and one laboratory.

  • 4 Credits Graded

  •  6178 ECE 4570   LEC 001

  • Instruction Mode: In Person

  •  6179 ECE 4570   LAB 401

  • Instruction Mode: In Person